The Distance and Midpoint Formulas

Sometimes it is necessary to study line segments on the coordinate plane. A **line segment**, or a part of a line, contains two endpoints. The coordinates of these endpoints can help us find the length and the **midpoint**, or the point that is halfway between the two endpoints, of the line segment. We can calculate the length of a line segment by using the **Distance Formula**, and we can calculate the midpoint of a line segment by using the **Midpoint Formula**.

The Distance Formula

To calculate the distance \(d \) of a line segment with endpoints \((x_1, y_1)\) and \((x_2, y_2)\) use the formula

\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.
\]

The Midpoint Formula

To calculate the midpoint of a line segment with endpoints \((x_1, y_1)\) and \((x_2, y_2)\) use the formula

\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right).
\]

Examples

a. Find the distance between (2, 3) and (6, 8).

Let \(x_1 = 2, x_2 = 6, y_1 = 3, \) and \(y_2 = 8 \).

\[
d = \sqrt{(6 - 2)^2 + (8 - 3)^2} = \sqrt{16 + 25} = \sqrt{41} \text{ or } 6.4 \text{ units}
\]

b. Find the midpoint of (5, 1) and (-1, 5).

Let \(x_1 = 5, x_2 = -1, y_1 = 1, \) and \(y_1 = 5 \).

\[
\left(\frac{5 - 1}{2}, \frac{1 + 5}{2} \right) = \left(\frac{4}{2}, \frac{6}{2} \right) = (2, 3)
\]

(2, 3) is the midpoint

Practice

Find the distance between each pair of points. Round answers to the nearest hundredth.

1. (4, 6), (1, 5)
2. (15, 4), (10, 10)
3. (-7, -2), (11, 3)
4. (7, -5), (9, -1)
5. (-8, 4), (3, -4)
6. (-1.8, 1.9), (1.1, 2.8)
7. **Standardized Test Practice**
 What is the midpoint of the line segment with endpoints \((5, -1)\) and \((-9, 7)\)?
 A (2, -3)
 B (-2, 3)
 C (3, -2)
 D (-3, 2)