A **rational expression** is an algebraic fraction whose numerator and denominator are polynomials. Any values of the variable that result in a denominator of zero must be excluded from the domain of the variable. These are called **excluded values** of the rational expression. To simplify a rational expression, eliminate (by dividing) any common factors of the numerator and denominator using the GCF.

Example

Simplify \(\frac{b - 3}{b^2 - 2b - 3} \) and state the excluded values of \(b \).

\[
\frac{b - 3}{b^2 - 2b - 3} = \frac{b - 3}{(b - 3)(b + 1)}
\]

Factor the denominator.

\(b - 3 = 0 \) and \(b + 1 = 0 \)

Exclude the values for which \(b - 3 = 0 \) and \(b + 1 = 0 \).

\(b = 3 \) \(b = -1 \)

Therefore, \(b \) cannot equal 3 or -1.

\[
\frac{b - 3}{(b - 3)(b + 1)} = \frac{b - 3}{(b - 3)(b + 1)}
\]

Simplify the fraction by dividing by the GCF, \(b - 3 \).

\[
= \frac{1}{b + 1}, \quad b \neq -1, 3
\]

Try These Together

Simplify and state the excluded values of the variables.

1. \(\frac{7a^3}{14a} \)

HINT: Find the exclude values before you simplify the expression.

2. \(\frac{x^2 + 3x + 2}{x^2 - 4x - 5} \)

HINT: Factor both the numerator and the denominator.

Practice

Simplify and state the excluded values of the variables.

3. \(\frac{6x^2y}{30x} \)

4. \(\frac{9x^4y^2z}{x^5y} \)

5. \(\frac{20xy^3z}{60x^2y^3} \)

6. \(\frac{8a}{a^2 + 3a} \)

7. \(\frac{12x}{3x + 6} \)

8. \(\frac{10x - 5x^2}{2x^2} \)

9. \(\frac{x^2 - 25}{x - 5} \)

10. \(\frac{b^2 - 4}{4b - 8} \)

11. \(\frac{3x + 3}{x^2 - 1} \)

12. \(\frac{a + 7}{a^2 + 9a + 14} \)

13. \(\frac{x^2 + 6x + 8}{6x + 24} \)

14. \(\frac{y^2 + 7y + 6}{y^2 + 5y - 6} \)

15. **Standardized Test Practice** Simplify the rational expression \(\frac{2x^2 - 98}{8x - 56} \).

A \(4(x + 7) \)

B \(4(x - 7) \)

C \(\frac{x^2 - 49}{x - 7} \)

D \(\frac{x + 7}{4} \)